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Thermal fatigue life of ceramics under
mechanical load

N. KAMIYA, O. KAMIGAITO
Toyota Central Research and Development Laboratories, 41-1 Aza Yokomichi, Oaza
Nagakute, Nagakute-cho, Aichi-gun, Aichi-ken, 480-11 Japan

Thermal fatigue life of ceramics under mechanical load was studied using a soda-lime—
silica glass rod. The life was also calculated by the application of fracture mechanics of
ceramics based on slow crack growth. Both results agreed well. For instance, the follow-

ing formulae hold well for the fatigue life of the ceramics under mechanical stress:
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where P, N, 010, omo, AT, m, n and/ and C' are survival probability, thermal stressing
cycles (thermal fatigue life), the maximum thermal stress, mechanical stress, thermal shock
severity, Weibull modulus, a material constant and constants, respectively. By the
application of the second formula, the thermal stress induced on the glass rod in plunging
the rod into water from hot atmosphere was estimated. The estimated value (11.2kg
mm~2 for a glass rod of 4 mm diameter and AT = 180° C) is thought to agree rather well
with that estimated from the well-known formula derived from heat diffusion theory
(9.7 ~ 15.8 kg mm~2) considering the accuracy of the approximation.

1. Introduction

It has been shown that the prediction of fatigue
life of ceramics can be made by application of
fracture mechanics of ceramics in the absence of
mechanical load [1,2]. In practice, however,
thermal fatigue frequently occurs under the
influence of mechanical load. Thus, the prediction
of thermal fatigue life of ceramics in the presence
of mechanical load is as important as that of
ceramics in the absence of the load. In the present
paper, this has been studied using a soda—lime—
silica glass rod.

2. Experimental procedure

2.1. Specimens

Soda-lime—silica glass rods were chosen for the
experiment. Their dimensions were 4mm in
diameter and 75mm in length. The specimens
were cut from a long bar with a diamond blade,
The ends of each rod were protected with tubes
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of glass fibre to prevent them initiating failure.

2.2. Apparatus

The glass rods were subjected to thermal shock
using the apparatus shown in Fig. 1. Nine rods
were loaded in the specimen holder, and three-
point bending stress was applied to each rod
through a fine stainless wire connected to a
weight (Fig. 1). The rods were kept for 30 min
in a furnace, then plunged rapidly into water
at 30+£0.5°C. The time for the transfer from
the furnace to water was about 1.6 sec. A spring
was used to relax the stress induced by the rapid
motion of the specimen and weights in plunging.
The increment in the stress due to the motion for
the immersion was within 10% of that due to the
weight, which was measured with a strain gauge
set on a glass rod. After the immersion of 5 min,
the specimens were slowly transfered into the
furnace. The time for the transfer was about
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16 sec. The heating and cooling process was
repeated until all specimens were broken. The
number of cycles at which each specimen broke
was recorded on a digital counter connected to
each stainless wire.

The thermal shock severity, AT, i.e. the tem-
perature difference between the furnace and the
water, was varied from 210° C to 180° C. In water
quenching, however, as water vapour is apt to
envelop the specimen in water, it is desirable to
take AT as that between the temperature of the
hot zone and the boiling point of water, 100° C,
as pointed out by Davidge and Tappin [3]. From
these considerations AT was taken in the present
paper as that between the temperature of the hot
zone and that of water, AT, (base temperature =
water temperature), as well as that between the
temperature of the hot zone and 100° C, AT g
(base temperature = 100° C), and the results in
both systems of AT have been examined. The
mechanical stress level, o0yq, was varied from
2.28 to 0.554kgmm™2,

The flexural strength of the glass rod was
measured by applying three-point loading to the
span of 40mm length at room temperature and
the Weibull modulus was compared with that
determined from the failure by thermal fatigue
in the presence of mechanical stress. To examine
the value of exponent, n, in the formula V=
AKkE, the stress rate was varied from 6.66 to
6.66 x 102 kgmm ™2 sec”!, where V, 4 and K;
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Pulley Figure 1 Schematic diagram of
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stand respectively for the crack velocity, a material
constant and the stress intensity factor. The value

of n was given through the following formula:
1

Of\ O n+1
==
O¢ g

where o, and o} stand respectively for the medians
of the flexural strength under the stressing rates of
o and ¢'. The value of # was compared with that
determined from the thermal fatigue experiment.

3. Results

3.1. Thermal fatigue

The survival probability, P, at a given mechanical
stress level (0.554 kg mm™2) is plotted asa function
of the cycles of thermal stressing (thermal fatigue
life), V, in Fig. 2. P was calculated by the equation
P=1—F=1—-(—03)/(J+04), where F is
the cumulative failure probability for specimen i
from an ordered set of J specimens. In this test,
the number of specimens was 18 for each experi-
mental condition. P at various mechanical stress
levels is given in Fig. 3 for a fixed value of AT. As
shown in Figs 2 and 3, In(— InP) plotted against
InN for fixed values of AT and oy gives a
straight line obtained by a linear regression analysis
according to a linear relation between In(— InP)
and InA, and the lines for different values of
AT and oyp are almost parallel to one another.
These features resemble those in T—SPT (thermal



Figure 2 The survival probab-
7 ility, P, as a function of the
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Q 40 silica glass. Linear lines are
- — obtained by a linear regression
= Q analysis.
2 '
8 - / st / i
aog i ‘/ /‘7 l AT30 (A7'100)(°C) 4-2 \E
I 1V v °© 210(140) =
.5095_ a 200(130) 13
v Y = 190(120)
a © 180 (110) |
cMO=0.554 kg mm2 | d-g4
0.99 L 1 1 L 1 1 1
1 5 10 50 100 500 1000
Cycles N

shock severity—probability—time) diagrams [2],
and the possibility of a similar formulation to
T—SPT diagrams based on fracture mechanics of
ceramics is suggested for the present study. This
wiil be discussed later.

3.2. Flexural strength

The survival probability, P (=1—(i—0.3)/
(J/+04), J=40), is plotted as a function of
flexural strength, o, for various stressing rates
in Fig. 4. As shown in the figure, it fits a straight
line which was obtained by a linear regression
analysis according to a linear relation between
In(—InP) and Ino;. The Weibull moduli, m,

001

determined from the linear regression analysis
are 9.0+£02, 9604, 90+0.5 and 83 0.2
under a stressing rate of 6.66 x 1072, 6.66 x 1072,
2.66 and 6.66 kgmm 2 sec !, respectively. Flexural
strengths at P = 0.5 are given by 133,158, 17.1
and 16.8 kgmm 2, respectively. The values of m
determined above are in good agreement with
those given by other authors for soda—lime—
silica glass [4]. From the dependence of the
flexural strength at which P is 0.5 on the stressing
rate, the material constant, », is estimated as n =
17.2 £40, which is in good agreement with the
literature value [5].
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Figure 3 The survival probab-
ility, P, as a function of the
thermal stressing cycles, N, at
a fixed value of AT,, (180°C)

ﬂ

099 ! i | 1 1
1 5 10 50 100

Cycles N

500 1000

for soda-lime—silica glass. Linear
lines are obtained by a linear
regression analysis.
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4. Discussion

As suggested before, the thermal fatigue in the
presence of mechanical stress is expected to be
treatable using the same approximation as that
used in the absence of stress. On the basis of frac-

ture mechanics, the crack-growth rate, V, is
expressed as follows [6]:
da

V =— = AK} 1

T = AKi M

where @ and ¢ stand respectively for the crack
length and time, and the other variables are
explained above. Furthermore, K is expressed as
follows [7]:

Ky = Yod”

(2)
where Y and ¢ stand respectively for a geometrical
factor and stress. From Equations 1 and 2, V is
expressed as follows:

da _ AY" g a2,

3
ar (3)
For a ceramic under thermal stress in the presence
of a mechanical stress, ¢ is composed of the ther-
mal stress, o, and the mechanical stress, oy.
Therefore, the following equation holds:

da

dt

|4

AY"(op + oy)" @2 4)
In general, Y, o and oy depend on a as well as
t and temperature, and it is almost impossible to
get an exact solution of Equation 4. For a rough
evaluation of the failure time, however, they can
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be approximated to be independent of a, as the
fatigue life is almost dominated by the duration
in which g reaches a certain small and critical
length. Moreover, their dependence on tempera-
ture can be approximated by assuming that the tem-
perature is almost constant [2]. From this approxi-
mation, the following equation can be derived:

hor
|

where ¢; stands for the initial crack length. In
most cases, oy as well as o varies periodically
with time. On this consideration, a at the end of
N cycles can be expressed as follows:

n—?2
ai(2—n)/2__a(2—n)/2 — (—T)AYnN
X {

where w is the periodic time of the thermal
cycle. At the occurrence of failure, 4 > g;. There-
fore the following equation is derived from
Equation 6:
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Moreover, ¢p is proportional to the thermal
shock severity, AT, on the assumption that the
temperature difference is limited to a narrow
range [2]. Therefore o is expressed as follows:

or = orof(t) = kAT f(¥) ®

where opg and & stand for the maximum stress
and a constant, respectively, and f(¢) is a function
of time whose maximum is normalized to unity.
oy can also be expressed as follows:

oM = Omo 8(7) )

where oy stands for the maximum sress and
g(t) is a function of time whose maximum is
normalized to unity. Substitution of Equations
8 and 9 into Equation 7 gives the following:

- . [n—2
ai(z n)/2 _T_(

)AY”N

n w
X { Y nCqofyo (k ATY* 9 _’ gime dt}.
a=0 0 (109)

The right-hand side of Equation 10 consist of
many terms involving different exponents of oy
as well as AT. It, however, can be well approxi-
mated by the assumption that the main contri-
bution of 0y comes from the maximum term and
others in Equation 10 (see the Appendix). The
maximum term is given by the values of g, I,
which are determined by the following equation
(Appendix):

! . OMo _ 9Mo

= = . 11
n—1 "~ aro k AT ( )
Therefore, the following is given:
R L
a?m? = 7( 3 )
x AY"™N,Cioho okt H {1, 29| (12)
Oro
where v is a constant, and
w
a1, M0 - [ gneigy, (13)
Oto o

On the basis of Weibull statistics, the distribution
of the initial crack length in ceramics can be
expressed as follows [2]:

P = exp [— V(ay/ap)™™"?] (14)

where V, ay, and m stand respectively for the
stressed volume, normalization constant and

Weibull modulus., Substitution of Equation 12
into Equation 14 gives the following:

Im

P =2 N+ oy
n

n
n—0nHm

n

+

Inogo +C (15)

or

In—InP) = Zl—lnN-FlnﬂlnoMo

+ (”—_n—Qﬂ In (AT)+ C' (16)

where
-2
C=va” [(——” 5 )7A YnC,H} m/(-2)
C'= Ck(n—l)m/(n-2)_

Equations 15 and 16 prove a nearly linear depen-
dence of In(—InP) on InNV and also on In(AT) or
In op1o. The equations prove the occurrence of the
parallel shift of the line made by In(— In P) plotted
against In, with the variation of AT as well as
omo. These results agree well with the experi-
mental results mentioned before.

According to the equations, In(—InP) plotted
against InN gives the value of m/n as its tangent.
For a given value of P, In NV plotted against In oy
gives the value of /, and that plotted against In (AT)
gives the value of (n — I).

In Figs 5 and 6, the value of InN for P= 0.5
on each line in Figs 2 and 3 is plotted respectively
against In(AT) and lnoyg. The set of experi-
mental data are fitted to a straight line obtained
by alinear regression analysis according to Equation
16 in either case. This proves Equation 15 and 16
valid. The value of / determined from the tangent
of the straight line in Fig. 6 is 2.6 + 0.1. The values
of (n—1I) determined from Fig. 5 are 23.3+1.3
for ATz, and 14.9 £0.8 for AT,q. These values
give 259 % 1.3 and 17.5 £ 0.8 as the value of n
for AT, and AT, respectively. The value of n
determined by taking the base temperature as that
of boiling water agrees with the literature value
[5] than the other system of AT, in which the
base temperature is that of water, 30° C. However,
since the difference of the value of n in the two
systems is small, the determination of a more
suitable system of the two systems was impossible
in the present experiment. A more suitable system

3163



730 (Base temp.=100°C)
120 . 140

Figure 5 Dependence of the median of

100 _ ' thermal fatigue life, N, on thermal shock
In a700 severity, AT, for soda-lime—silica glass
48 : 48 . 50 under constant mechanical stress {opp =
6l 1500 0.554kgmm2). Circles correspond to the
A\ Oo = 0.554 kg mm2 value of N for P= 0.5 on each line shown
i N in Fig. 2.
=100
§4 r 4 50 2
N i
Q N
L \§ j =
f g \\\
— 2 L § \Q\ 1 O
\ . 1 s
~
- L N
I | \ t 1 1
0 51 53 55
Ina73p L
180 200 220 240

4730 (Base temp. = Temp.of water)

other than the two systems of AT may be deter-
mined from further experiments in which oil
could be used as a cooling medium. From these
results and the slope of each line in Figs 2 and 3,
m is determined according to Equation 16, and is
shown in Table I, together with the value deter-
mined from the mechanical method (flexural
strength data). The value given by the thermal
fatigue data is a little higher than the value given
by mechanical stressing. The failure occurred nor-
mal to the rod in either case. Therefore the dis-
crepancy between the values of m determined
separately cannot be attributed to the possible
difference in the distribution of flaws in the nor-

Oyo (kg mm?)
05 10 15 20 30
s [ ' ' ! 500
DTyp=180°C

\% 4100

Sat \ 150 4
Q X
2 | Q
c % 2

Figure 6 Dependence of the median of thermal fatigue
life, N, on mechanical stress, oy, for sodalime—silica
glass for the fixed value of AT,,, 180° C (AT,,,, 110° C).
Circles correspond to the value of N for P = 0.5 on each
line shown in Fig. 3.

31564

mal and parallel directions to the glass rod as in
the failure in the absence of mechanical stress
[2}.

The occurrence of different values of m for
separate failure processes is also reported by
Bansal er al. [8] for sintered alumina in which
m ranges from 11 to 34, and also for hot pressed
alumina in which m ranges from 6 to 17. There-
fore, it might be considered that the value of m
is not always the same for separate failure processes,
or that there are many types of flaws having
different values of m, one of which is sensitive
to some limited failure processes and environ-
ments and others which are sensitive to others.
Occurrence of such flaws, however, cannot be
accepted for glass or similar materials, at least
because there is a close correspondence between
the sequence of the thermal fatigue life in thermal
quenching of glass rods and that of mechanical
strength measured in ambient atmosphere of the
rods [9]. Therefore, the large value of m given for
the fatigue life is thought to result from the
larger effective area for the thermal stress than
that for mechanical stress.

A life prediction diagram of thermal fatigue
is drawn in Figs 7 and 8, based on Equation 16
and the parameter determined experimentally. The
values of parameters m, n, [ and C' are 22.9,
259, 2.6 and 91.1 respectively, and the values of
m and C' are those determined from the linear
regression analysis of thermal fatigue data under
the condition of AT =180°C and oyo =
0.554kgmm™2. As shown in Figs 7 and 8, thermal
fatigue data agree well with the predicted line.



Figure 7 Life prediction diagram
of thermal fatigue of soda-lime~
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These show that Equation 16 is valid, and that Eo
diagrams such as Figs 7 and 8 are very useful for Oro = [— (T, —Ty) (17)

the prediction of thermal fatigue life of ceramics.

According to Equation 11, the maximum
thermal stress, opg, can be determined from the
value of #, / and oyo. By the use of n and / deter-
mined by Figs 5 and 6 and of 1.26 kgmm™? as the
value of 0y determined by averaging the logarithm
of the minimum and maximum applied stress in
Fig. 6 (= (In0.554 +1n2.28)/2), opo was deter-
minedas 11.2 kgmm™2 for AT3 = 180° C (AT g0 =
110° C). It is given in Table II together with the
value given from the formula [10]:

where F, o, u, T, and Ty stand respectively for
Young’s modulus, the linear coefficient of thermal
expansion, Poisson’s ratio, and the average and
surface temperatures (£ =6.9 x 10’ Nm™, a=
9.5x107¢ C™', u=0.24).

As listed in Table II, the value given through
Equation 1! is intermediate between the values
given through Equation 17 as ATz, = 180°C
(base temperature = temperature of water) and
ATy = 110° C (base temperature = boiling tem-

inN
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Q 8’; 0554 v
204 o
= 05 0.3
@ 06 - —~
T Mo=" J1 q
008 0.2 kg mm c
& -2 !
= 09 N
> c
> 095 L d-3 - Figure 8 Life prediction diagram
> v ATz,=180°C of thermal fatigue of soda-lime—
n 30 ilica gl d under a constant
— Predicted silica glass rod under a
-4 temperature difference, AT}, =
099 L ) L N . . 180° C. Parameter indicates the
AR 5 10 50 100 500 1000 constant mechanical stress. For
comparison, experimental data
CYC les NV are also shown.
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TABLE I Value of m determined from the thermal fatigue data (Figs 2 and 3) and the flexural strength data (Fig. 4)

%Tao (AT,40) MO s m

O (kg mm ™) From thermal* From flexural
fatigue data strength data

180 (110) 2.28 17.2 3.0

180 (110) 1.70 18.9 (3.2)

180 (110) 1.12 18.1(3.4)

180 (110) 0.554 22.9(3.8) 9.0 (0.2)t

190 (120) 0.554 23.1 (3.7)

200 (130) 0.554 25.7 (4.1)

210 (140) 0.554 28.5 (4.8)

*Obtained by combination of the value of 7, 25.9, determined from Figs § and 6, with m/n determined from Figs 2

and 3.

TThe numbers in parentheses represent the standard deviation.

perature of water). This shows that the value
given through Equation 11 is reasonable and
Equation 11 is valid. Therefore, it seems to be
correct to calculate the temperature difference,
AT, by a formula as follows:

where 0 <n <1 and T, is the temperature of the
water cooling medium. A more precise value of
7 should be determined by further experiments.
The estimated value of opg (11.2kgmm™?) is
much higher than the value of oy (1.26 kgmm™2),
which proves the consistency of the application
of the equations to the analysis. From these good
agreements, the validity of the formula derived
on the basis of the fracture mechanics of ceramics
is proved. These formulae will be applicable to
ceramics other than glass, when either thermal
stress or mechanical stress is much larger than
other stresses. '
Equations 15 and 16 show that the T—SPT
diagram [2] holds for the ceramics thermally

TABLE II Values of thermal stresses estimated by the
present thermal fatigue data (Equation 11) and estimated
with the heat diffusion theory

oo (kg mm™2) ATCO)

Present data Heat diffusion theory*

(Equation 11) (Equation 17)

11.2 (0.7 15.8 180 (AT,,)
9.7 110 (AT,,,)

*Gives the value E=6.9 X10* Nm™?, «a=0.5X10"¢

°C"! and u = 0.24, which are the values for soda-lime—
silica glass used.

TThe numbers in parentheses represent the standard
deviation.
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stressed in the presence of mechanical stress,
in which the value of m must be taken as that
estimated in a similar environment. In the diagram,
details are somewhat different from that in the
absence of mechanical stress. In the absence of the
stress, the tangent of the line made by plotting
In(— In P) against In N is common to any value of
AT. But in the presence of stress, the maximum
term in the right-hand side of Equation 10, or
1 varies slowly with variation of AT. It causes the
variation of the tangent of the line plotted against
InN with InAT. Therefore, the validity of the
parallel shift of the line with the variation of AT
is limited to only a small range of AT,

5. Conclusions

(a) Some formulae for prediction of thermal
fatigue life of ceramics in the presence of mech-
anical stress are given,

(b) The formulae are proved to be valid by
experiments on soda-lime—silica glass.

(c) By using one of the formulae, thermal
stress induced on the glass rod in water-quenching
is estimated as 11.2kgmm™2, which is in good
agreement with the value estimated by a formulae
based on heat diffusion theory (9.7 ~15.8kg
mm™2).

Appendix
For evaluation of the contribution of opg to
Equation 10, L(g) is defined as follows:

n!
L(g) = —+— afso o {5979 dr.
q'(n—q)! :
(A1)
By taking ¢ as a continuous variable, the maxi-
mum of L(g) is approximately given by equating
its derivative to zero:



q
n—q

dinL(g)
dg

0=—In Mo

+ In
010

+ 8% [m(ngf"-q dt)}. (A2)

The last term on the right-hand side of Equation
A2 gives the following:

2blire) oo

—f;f”“’ dr

{(lng)ng"*q de— [ (inf)gim= dr}. (A3)
When g = [, or gy is constant:

Janpfma ae
7 = [

— (A4)
f fn—q dr

In most cases, f is a rapidly changing function of
time which has the maximum, and the maximum
is normalized to unity by the definition. Therefore
79 is almost zero outside the vicinity of the time
at which £ is unity or the maximum. The value of
Inf is zero at the time, and large in the region
where "9 is almost zero. Therefore, Z is con-
sidered to be very small and can be neglected
in Equation A2 for determining the maximum,
because 1n {g/(n —q)} and In (opo /070 ) are not
always small.

When g is a function of ¢ which has the maxi-
mum, a similar result is given. Therefore, approxi-
mated values of g, /, which give the maximum
term in Equation 10, are given by neglecting the
integral factor as follows:

L. owo (AS)

n—1 Oro
As shown above, the main contribution of
oMo comes from the terms having the factor,
nCqofio01o?, of comparably large value. These
terms with large values are evidently those having
the value of g which is nearly the same with the
value of I, because nCqofyooto? is nearly the
same as the maximum value, ,,C;oh0 075, when
q =1 and it decreases rapidly when the deviation
of g from [ exceeds a certain value. Moreover, the

value of nCqofoofo? as a function of g is

approximately symmetric around the value of

AL n-I+AL _ AL n-1-Al
Loor wCraomo 010 = nCreaiOno 970 -
From these considerations, ¢>~™’% in Equation

10 can be approximated as follows:

n—2 g=l+Al
af ‘—)AY”N Y Caohiooh”
2 qg=I-Al
W
x [ gmaar (A6)
A1)
. —2 n 1 n-1
s\ AY"N, Gono 10
X j“’glfn-l dr (A7)
0

(y = 2Al: constant).

The approximation, Equation A7, is confirmed to
be good referring to the derivative, da®®~™/?/doyo,
also, because the derivative given from Equation
A6 by the use of the approximation adopted for
the derivation of Equation A6 is the same as that
given by directly derivating Equation A7 as to
oMo -
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