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Thermal fatigue life of ceramics under 
mechanical load 

N. K A M I Y A ,  O. K A M I G A I T O  
Toyota Central Research and Development Laboratories, 41-1 Aza Yokomichi, Oaza 
Nagakute, Nagakute-cho, Aichi-gun, Aichi-ken, 480-11 Japan 

Thermal fatigue life of ceramics under mechanical load was studied using a soda-lime- 
silica glass rod. The life was also calculated by the application of fracture mechanics of 
ceramics based on slow crack growth. Both results agreed well. For instance, the follow- 
ing formulae hold well for the fatigue life of the ceramics under mechanical stress: 

In( - - InP)  - m l n N + / m  InOMO + ( n - - I ) m  In ( A T ) + C '  
n n n 

/ _ OMO 

(n - / )  oTO 

where P, N, oTO, OMO, AT, m, n and / and C' are survival probability, thermal stressing 
cycles (thermal fatigue life), the maximum thermal stress, mechanical stress, thermal shock 
severity, Weibull modulus, a material constant and constants, respectively. By the 
application of the second formula, the thermal stress induced on the glass rod in plunging 
the rod into water from hot atmosphere was estimated. The estimated value (11.2 kg 
mm -2 for a glass rod of 4 mm diameter and A T = 180 ~ C) is thought to agree rather well 
with that estimated from the well-known formula derived from heat diffusion theory 
(9.7 ~ 15.8 kg mm -2) considering the accuracy of the approximation. 

1. Introduction 
It has been shown that the prediction of fatigue 
life of ceramics can be made by application of 
fracture mechanics of ceramics in the absence of 
mechanical load [1,2]. In practice, however, 
thermal fatigue frequently occurs under the 
influence of mechanical load. Thus, the prediction 
of thermal fatigue life of ceramics in the presence 
of mechanical load is as important as that of 
ceramics in the absence of the load. In the present 
paper, this has been studied using a soda - l ime-  
silica glass rod. 

2. Experimental procedure 
2,1. Specimens 
Soda-time-silica glass rods were chosen for the 
experiment. Their dimensions were 4ram in 
diameter and 75ram in length. The specimens 
were cut from a long bar with a diamond blade. 
The ends of each rod were protected with tubes 
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of glass fibre to prevent them initiating failure. 

2.2. A p p a r a t u s  
The glass rods were subjected to thermal shock 
using the apparatus shown in Fig. 1. Nine rods 
were loaded in the specimen holder, and three- 
point bending stress was applied to each rod 
through a fine stainless wire connected to a 
weight (Fig. 1). The rods were kept for 30 rain 
in a furnace, then plunged rapidly into water 
at 30-+ 0.5 ~ C. The time for the transfer from 
the furnace to water was about 1.6 sec. A spring 
was used to relax the stress induced by the rapid 
motion of the specimen and weights in plunging. 
The increment in the stress due to the motion for 
the immersion was within 10% of that due to the 
weight, which was measured with a strain gauge 
set on a glass rod. After the immersion of 5 rain, 
the specimens were slowly transfered into the 
furnace. The time for the transfer was about 
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Figure I Schematic diagram of 
the thermal fatigue testing appar- 
atus. Mechanical stress is induced 
through a wire by a weight. 

16 sec. The heating and cooling process was 
repeated until all specimens were broken. The 
number of cycles at which each specimen broke 
was recorded on a digital counter connected to 
each stainless wire. 

The thermal shock severity, AT, i.e. the tem- 
perature difference between the furnace and the 
water, was varied from 210 ~ C to 180 ~ C. In water 
quenching, however, as water vapour is apt to 
envelop the specimen in water, it is desirable to 
take AT as that between the temperature of the 
hot zone and the boiling point of water, 100 ~ C, 
as pointed out by Davidge and Tappin [3]. From 
these considerations AT was taken in the present 
paper as that between the temperature of the hot 
zone and that of water, AT3o (base temperature = 
water temperature), as well as that between the 
temperature of the hot zone and 100 ~ C, AT1oo 
(base temperature = 100 ~ C), and the results in 
both systems of AT have been examined. The 
mechanical stress level, aMo , was varied from 
2.28 to 0.554 kg mm -2 . 

The flexural strength of the glass rod was 
measured by applying three-point loading to the 
span of 40mm length at room temperature and 
the WeibuU modulus was compared with that 
determined from the failure by thermal fatigue 
in the presence of mechanical stress. To examine 
the value of exponent, n, in the formula V=  
A k'], the stress rate was varied from 6.66 to 
6.66 x 10 -2 kgmm -2 sec -1, where V, A and K I 
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stand respectively for the crack velocity, a material 
constant and the stress intensity factor. The value 
of n was given through the following formula: 

1 

( ~ )  = {  O~ n+l 

where o~ and e) stand respectively for the medians 
of the flexural strength under the stressing rates of 

and ~'. The value of n was compared with that 
determined from the thermal fatigue experiment. 

3. Results 
3.1. Thermal fatigue 
The survival probability, P, at a given mechanical 
stress level (0.554 kg mm -2) is plotted as a function 
of the cycles of thermal stressing (thermal fatigue 
life), N, in Fig. 2. P was calculated by the equation 
P = I - - F = I - - ( i - - 0 . 3 ) / ( J + 0 . 4 ) ,  where F is 
the cumulative failure probability for specimen i 
from an ordered set of J specimens. In this test, 
the number of specimens was 18 for each experi- 
mental condition. P at various mechanical stress 
levels is given in Fig. 3 for a fixed value of A T. As 
shown in Figs 2 and 3, ha(- lnP) plotted against 
InN for fixed values of AT and a ~ o  gives a 
straight line obtained by a linear regression analysis 
according to a linear relation between ln(--lnP) 
and lnN, and the lines for different values of 
2xT and O~o are almost parallel to one another. 
These features resemble those in T-SPT (thermal 
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Figure 2 The survival probab- 
ility, P, as a function of the 
number of thermal stressing 
cycles, N, under a constant 
value of mechanical stress 
(0.554 kgmm -2) for sodaqime- 
silica glass. Linear lines are 
obtained by a linear regression 
analysis. 

shock seve r i t y -p robab i l i t y - t ime)  diagrams [2], 
and the possibil i ty of  a similar formulation to 
T - S P T  diagrams based on fracture mechanics of  
ceramics is suggested for the present study. This 
wlJ be discussed later. 

3 .2 .  F l e x u r a l  s t r e n g t h  
The survival probabil i ty ,  P (=  1 - ( i - 0 . 3 ) /  
( J +  0.4), J =  40), is p lot ted as a function of  
flexural strength, oe, for various stressing rates 
in Fig. 4. As shown in the figure, it fits a straight 
line which was obtained by a linear regression 
analysis according to a linear relation between 
l n ( -  lnP)  and In e~. The Weibull moduli ,  m, 

determined from the linear regression analysis 
are 9.0-+ 0.2, 9.6 -+ 0.4, 9.0-+ 0.5 and 8.3 -+0.2 
under a stressing rate of  6.66 x 10 -2, 6.66 • 10 -1, 
2.66 and 6.66 kg mm -2 sec -1 , respectively. Flexural 
strengths at P =  0.5 are given by 13.3, 15.8, 17.1 
and 16 .8kgmm -2, respectively. The values of  rn 
determined above are in good agreement with 
those given by other authors for soda - - l ime-  
silica glass [4]. From the dependence of  the 
flexural strength at which P is 0.5 on the stressing 
rate, the material constant,  n, is estimated as n = 
17.2 -+ 4.0, which is in good agreement with the 
literature value [5]. 
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Figure 3 The survival probab- 
ility, P, as a function of the 
thermal stressing cycles, N, at 
a fixed value of AT30 (180 ~ C) 
for soda-lime-silica glass. Linear 
lines are obtained by a linear 
regression analysis. 
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Figure 4 Flexural strength dis- 
tribution of soda-lime-silica 
glass for various stressing rates. 
Linear lines are obtained by a 
linear regression analysis. 

4.  Discussion 
As suggested before, the thermal fatigue in the 
presence of  mechanical stress is expected to be 

treatable using the same approximation as that  
used in the absence of  stress. On the basis of  frac- 
ture mechanics, the crack-growth rate, V, is 
expressed as follows [6]: 

da 
V - - A K~ (1) 

dt  

where a and t stand respectively for the crack 
length and time, and the other variables are 
explained above. Furthermore,  K x is expressed as 
follows [7]: 

KI = Y a a 1/2 (2) 

where Y and a stand respectively for a geometrical 
factor and stress. From Equations 1 and 2, V is 

expressed as follows: 

da 
V - - A y n o n a n / 2 .  ( 3 )  

dt 

For a ceramic under thermal stress in the presence 
of  a mechanical stress, a is composed of  the ther- 
mal stress, aT, and the mechanical stress, a M. 
Therefore, the following equation holds: 

da 
- - -  : A y n ( a T  + OM) n a n/2. (4) 
d t  

In general, Y, a T and a M depend on a as well as 
t and temperature,  and it is almost impossible to 
get an exact solution of Equation 4. For a rough 
evaluation of the failure time, however, they can 
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be approximated to be independent of  a, as the 
fatigue life is almost dominated by the duration 
in which a reaches a certain small and critical 
length. Moreover, their dependence on tempera- 

ture can be approximated by assuming that the tem- 
perature is almost constant [2]. From this approxi- 
mation,  the following equation can be derived: 

1 

X q~=onCq f a~i a~  -q  a t  (5) 
o 

where a i stands for the initial crack length. In 
most cases, o M as well as aT varies periodically 
with time. On this consideration, a at the end of  
N cycles can be expressed as follows: 

i - -  = - -  A y n N  

1,1 

• y~ncq a ~ - q d t  (6) 
~q=O 

where co is the periodic time of the thermal 
cycle. At the occurrence of failure, a >> a i. There- 
fore the following equation is derived from 
Equation 6: 

q=O 0 



Moreover, aT is proportional to the thermal 
shock severity, AT, on the assumption that the 
temperature difference is limited to a narrow 
range [2]. Therefore aT is expressed as follows: 

ew = aTof( t)  = k A T f ( t )  (8) 

where aTO and k stand for the maximum stress 
and a constant, respectively, and f ( t )  is a function 
of time whose maximum is normalized to unity. 
eta can also be expressed as follows: 

aM = eMO g(t) (9) 

where eMo stands for the maximum sress and 
g(t) is a function of time whose maximum is 
normalized to unity. Substitution of Equations 
8 and 9 into Equation 7 gives the following: 

/2 

X EnCqe~ io  ( k a T )  n-q ) gq fn-qdt  
q = o  0 10) 

The right-hand side of  Equation 10 consist of 
many terms involving different exponents of eMO 
as well as AT. It, however, can be well approxi- 
mated by the assumption that the main contri- 
bution of aMO comes from the maximum term and 
others in Equation 10 (see the Appendix). The 
maximum term is given by the values of q, l, 
which are determined by the following equation 
(Appendix): 

l �9 e M O  UMO 
- ( 1 1 )  

n -- l aTe k AT 

Therefore, the following is given: 

i - 3 '  

(~ x AYnNnCzo loa~oZH l, aTe ] 

where 7 is a constant, and 
co 

\ eTo ] o 

On the basis of Weibull statistics, the distribution 
of the initial crack length in ceramics can be 
expressed as follows [2]: 

P = exp [-- V(ai/ao) -m/2] (14) 

where V, ao and m stand respectively for the 
stressed volume, normalization constant and 

Weibull modulus. Substitution of Equation 12 
into Equation 14 gives the following: 

o r  

ln(-- lnP) - m l n N +  lm lnetao 
n n 

( n - l ) m  
+ - -  l n O T o + C  (15) 

ln(-- lnP) - m l n N +  lm lnaMo 
n n 

+ - -  (n - - / ) m  In (AT) + C' (16) 
n 

where 

C F = Ck(n-l)m/(n-2). 

r n / ( n - 2 )  

Equations 15 and 16 prove a nearly linear depen- 
dence of ln(-- lnP) on lnN and also on ln(AT) or 
In OMO. The equations prove the occurrence of the 
parallel shift of the line made by ln( -  lnP) plotted 
against tnN, with the variation of AT as well as 
aMO. These results agree well with the experi- 
mental results mentioned before. 

According to the equations, ln(--lnP) plotted 
against lnN gives the value of m/n as its tangent. 
For a given value of P, lnNplot ted  against ln OMO 
gives the value of l, and that plotted against In (AT) 
gives the value of (n - - / ) .  

In Figs 5 and 6, the value of lnN for P = 0.5 
on each line in Figs 2 and 3 is plotted respectively 
against ln(AT) and ln aMo. The set of  experi- 
mental data are fitted to a straight line obtained 
by a linear regression analysis according to Equation 
16 in either case. This proves Equation 15 and 16 
valid. The value of l determined from the tangent 
of the straight line in Fig. 6 is 2.6 -+ 0.1. The values 
of ( n - - / )  determined from Fig. 5 are 23.3 -+ 1.3 
for AT3o and 14.9 -+ 0.8 for ATloo. These values 
give 25.9 + 1.3 and 17.5 -+ 0.8 as the value of n 
for AT3o and ATloo, respectively. The value of n 
determined by taking the base temperature as that 
of boiling water agrees with the literature value 
[5] than the other system of AT, in which the 
base temperature is that of water, 30 ~ C. However, 
since the difference of the value of n in the two 
systems is small, the determination of a more 
suitable system of the two systems was impossible 
in the present experiment. A more suitable system 
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other than the two systems of  AT may be deter- 
mined from further experiments in which oil 
could be used as a cooling medium. From these 
results and the slope of  each line in Figs 2 and 3, 
m is determined according to Equation 16, and is 
shown in Table I, together with the value deter- 
mined from the mechanical method (flexural 
strength data). The value given by the thermal 
fatigue data is a little higher than the value given 
by mechanical stressing. The failure occurred nor- 
mal to the rod in either case. Therefore the dis- 
crepancy between the values of  m determined 
separately cannot be attributed to the possible 
difference in the distribution o f  flaws in the nor- 
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Figure 6 Dependence of the median of thermal fatigue 
life, N, on mechanical stress, OMO, for sodaqime-silica 
glass for the fixed value of aT~o, 180~ (~XT~o o, 110 ~ C). 
Circles correspond to the value of N for P = 0.5 on each 
line shown in Fig. 3. 
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Figure 5 Dependence of the median of 
thermal fatigue life, N, on thermal shock 
severity, AT, for soda-lime-silica glass 
under constant mechanical stress (oMo = 
0.554kgmm-~). Circles correspond to the 
value of N for P = 0.5 on each line shown 
in Fig. 2. 

mat and parallel directions to the glass rod as in 
the failure in the absence of  mechanical stress 

[2].  
The occurrence of  different values of  m t-or 

separate failure processes is also reported by 
Bansal et  al. [8] for sintered alumina in which 
m ranges from 11 to 34, and also for hot pressed 
alumina in which rn ranges from 6 to 17. There- 
fore,, it might be considered that the value o f  m 
is not always the same for separate failure processes, 
or that there are many types of  flaws having 
different values of  m, one of which is sensitive 
to some limited failure processes and environ- 
ments and others which are sensitive to others. 
Occurrence o f  such flaws, however, cannot be 
accepted for glass or similar materials, at least 
because there is a close correspondence between 
the sequence of  the thermal fatigue life in thermal 
quenching of  glass rods and that of  mechanical 
strength measured in ambient atmosphere of  the 
rods [9]. Therefore, the large value of m given for 
the fatigue life is thought to result from the 
larger effective area for the thermal stress than 
that for mechanical stress. 

A life prediction diagram of thermal fatigue 
is drawn in Figs 7 and 8, based on Equation 16 
and the parameter determined experimentally. The 
values of  parameters m, n, l and C' are 22.9, 
25.9, 2.6 and 91.1 respectively, and the values of  
m and C '  are those determined from the linear 
regression analysis of  thermal fatigue data under 
the condition of  AT3o = 180~ and OMo = 
0 .554kgmm -2. As shown in Figs 7 and 8, thermal 
fatigue data agree well with the predicted line. 
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Figure 7 Life prediction diagram 
of thermal fatigue of soda-lime- 
silica glass rod under a constant 
mechanical stress (0.554 kg 
mm-2). Parameter indicates the 
temperature difference, AT3o. 
For comparison, experimental 
data are also shown. 

These show that Equation 16 is valid, and that 
diagrams such as Figs 7 and 8 are very useful for 
the prediction o f  thermal fatigue life o f  ceramics. 

According to Equation 11, the maximum 
thermal stress, oTo , can be determined from the 
value o f  n, l and aMo. By the use of  n and I deter- 
mined by Figs 5 and 6 and of  1 .26kgmm -2 as the 
value of  OMo determined by averaging the logarithm 
of  the minimum and maximum applied stress in 
Fig. 6 (= ( ln0.554 + In 2.28)/2), OTO was deter- 
mined as 11.2 kg mm -2 for ATso = 180 ~ C (ATloo = 
110 ~ C). It is given in Table II together with the 
value given from the formula [10]: 

Eo~ 
OTO - (T a -  T~) (17) 

1 - - /x  

where E, cg /.t, Ta and T~ stand respectively for 
Young's modulus, the linear coefficient of  thermal 
expansion, Poisson's ratio, and the average and 
surface temperatures (E = 6.9 x 10 l~ Nm -2, a = 
9 5  x l0  -6 C -I , / / =  0.24). 

As listed in Table II, the value given through 
Equation 11 is intermediate between the values 
given through Equation 17 as A T3o = 180 ~ C 
(base temperature = temperature of  water) and 
A T10o = 110~ (base temperature = boiling tern- 
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Figure 8 Life prediction diagram 
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T A B L E I Value of m determined from the thermal fatigue data (Figs 2 and 3) and the flexural strength data (Fig. 4) 

aT,0 (aT, oo) ~ 
(~ C) (kg mm-2) 

m 

From thermal* From flexural 
fatigue data strength data 

180 (110) 2.28 17.2 (3.1)? 
180 (110) 1.70 18.9 (3.2) 
180 (110) 1.12 18.1 (3.4) 
180 (110) 0.554 22.9 (3.8) 
190 (120) 0.554 23.1 (3.7) 
200 (130) 0.554 25.7 (4.1) 
210 (140) 0.554 28.5 (4.8) 

9.0 (0.2)? 

*Obtained by combination of the value of n, 25.9, determined from Figs 5 and 6, with m/n determined from Figs 2 
and 3. 
?The numbers in parentheses represent the standard deviation. 

perature of water). This shows that the value 
given through Equation 11 is reasonable and 
Equation 11 is valid. Therefore, it seems to be 
correct to calculate the temperature difference, 
A T, by a formula as follows: 

a T  = aT,  oo + n(100--  Tw) (18) 

where 0 < r /<  1 and T w is the temperature of  the 
water cooling medium. A more precise value of 
77 should be determined by further experiments. 

The estimated value of aTo (11.2kgmm -2) is 
much higher than the value ofoMo (1.26 kg mm-2), 
which proves the consistency of the application 
of the equations to the analysis. From these good 
agreements, the validity of the formula derived 
on the basis of the fracture mechanics of ceramics 
is proved. These formulae will be applicable to 
ceramics other than glass, when either thermal 
stress or mechanical stress is much larger than 
other stresses. 

Equations 15 and 16 show that the T-SPT 
diagram [2] holds for the ceramics thermally 

TABLE II Values of thermal stresses estimated by the 
present thermal fatigue data (Equation 11) and estimated 
with the heat diffusion theory 

oTO (kgmm -2) AT (~ C) 

Present data Heat diffusion theory* 
(Equation 11) (Equation 17) 

11.2 (0.7)t 15.8 180 (AT~o) 
9.7 110 (ATIo o) 

*Gives the value E = 6 . 9  Xl01~  -~, a = 0 . 5 X l 0  -6 
~ C -1 and ~ = 0.24, which are the values for soda-lime- 
silica glass used. 
]'The numbers in parentheses represent the standard 
deviation. 
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stressed in the presence of mechanical stress, 
in which the value of m must be taken as that 
estimated in a similar environment. In the diagram, 
details are somewhat different from that in the 
absence of mechanical stress. In the absence of the 
stress, the tangent of the line made by plotting 
ln ( -  lnP) against lnN is common to any value of 
AT. But in the presence of stress, the maximum 
term in the right-hand side of Equation 10, or 
l varies slowly with variation of AT. It causes the 
variation of the tangent of the line plotted against 
lnN with In AT. Therefore, the validity of the 
parallel shift of the line with the variation of AT 
is limited to only a small range of AT. 

5. Conclusions 
(a) Some formulae for prediction of thermal 
fatigue life of ceramics in the presence of mech- 
anical stress are given. 

(b) The formulae are proved to be valid by 
experiments on soda-lime-silica glass. 

(c) By using one of the formulae, thermal 
stress induced on the glass rod in water-quenching 
is estimated as l l . 2 k g m m  -2, which is in good 
agreement with the value estimated by a formulae 
based on heat diffusion theory (9.7 ~ 15.8kg 
mm-2). 

Appendix 
For evaluation of the contribution of OMO to 
Equation 10, L(q) is defined as follows: 

n! ( L(q) q! (n - q)! afao o%q j g q f  "-q dt. 
(AI) 

By taking q as a continuous variable, the maxi- 
mum of L(q) is approximately given by equating 
its derivative to zero: 



d i n L ( q )  _ 0 = --  in q + in a MO_O 
dq n --  q OTO 

The last term on the right-hand side of  Equation 
A2 gives the following: 

f gq fn -q  dt  

{( lng)gqfn-qdt-- f ( Inf )gqfn-qdt  t . (A3) 

When g = l, or aM is constant:  

f ( ln f ) f  "-q at 
Z = (A4) 

f fn-q dt 

In most cases, f is a rapidly changing function of  
t ime which has the maximum, and the maximum 
is normalized to uni ty by the definition. Therefore 
f " - q  is almost zero outside the vicinity of  the t ime 
at which f is uni ty  or the maximum. The value of  
I n f  is zero at the time, and large in the region 
where f " - q  is almost zero. Therefore, Z is con- 
sidered to be very small and can be neglected 
in Equation A2 for determining the maximum, 

because In  {q/(n - -q)}  and In (OMO/OTO) are not  
always small. 

When g is a function of  t which has the maxi- 
mum, a similar result is given. Therefore, approxi- 
mated values of  q, l, which give the maximum 
term in Equation 10, are given by  neglecting the 
integral factor as follows: 

l OMO 
- (AS)  

n --  1 O'TO 

As shown above, the main contr ibut ion of  
oMO comes from the terms having the factor, 
nCqo~oa~o q, of  comparably large value. These 
terms with large values are evidently those having 
the value o f  q which is nearly the same with the 
value of  l, because nCqa~o(i~o q is nearly the 
same as the maximum value, nCle~toa~o z, when 
q - l and it decreases rapidly when the deviation 
of  q from l exceeds a certain value. Moreover, the 

value of  nCqa~oa~,o q as a function of  q is 
approximately symmetric around the value of  

,'-, ~l-Al~n-l+A1 ,,- ~l+Al~n-l-Al l, o r  nt~l_AZOMO OTO -~- nt.,l+AlUMO UTO . 

From these considerations, a} z-n)/2 in Equation 

10 can be approximated as follows: 

i + A y n N  ~ n ~ _ q  .n-q '.-,q v M O  u T O  
q=l-Al 

09 
• I gq fn -q  dt  

~o 

(3' = 2A1 : constant).  

O~o z 

(A6) 

(A7) 

The approximation,  Equation A7, is confirmed to 
be good referring to the derivative, da[ 2- n)/2/d(lMO, 
also, because the derivative given from Equation 
A6 by the use of  the approximation adopted for 
the derivation of  Equation A6 is the same as that 
given by  directly derivating Equation A7 as to 

GMO �9 
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